Paper 4

Questions are applicable for extended candidates only

- 1 This question is about acids, bases and alkalis.
 - (g) Dilute nitric acid, HNO₃(aq), reacts with aqueous calcium hydroxide, Ca(OH)₂(aq), as shown.

$$2HNO_{3}(aq) + Ca(OH)_{2}(aq) \rightarrow Ca(NO_{3})_{2}(aq) + 2H_{2}O(I)$$

 20.0 cm^3 of $0.0150 \text{ mol/dm}^3 \text{ Ca}(\text{OH})_2(\text{aq})$ reacts with 25.0 cm^3 of $\text{HNO}_3(\text{aq})$.

Calculate the concentration of $HNO_3(aq)$ in g/dm³.

Use the following steps.

• Calculate the number of moles of Ca(OH)₂(aq) used.

..... mol

• Determine the number of moles of $HNO_3(aq)$ which react with the $Ca(OH)_2(aq)$.

..... mol

• Calculate the concentration of HNO₃(aq) in mol/dm³.

..... mol/dm³

• Calculate the concentration of HNO₃(aq) in g/dm³.

																													g	/	dm	3
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	----	---

[5]

- **2** Copper is element 29 in the Periodic Table.
 - (e) Copper(II) oxide is formed when copper(II) nitrate, $Cu(NO_3)_2$, is heated.

 $2Cu(NO_{_3})_{_2}(s) \ \rightarrow \ 2CuO(s) \ + \ 4NO_{_2}(g) \ + \ O_{_2}(g)$

(i) State the class of oxide to which copper(II) oxide belongs.

- (ii) State the meaning of the Roman numeral (II) in the name copper(II) oxide.
 -[1]
- (iii) 0.0200 moles of $Cu(NO_3)_2$ is heated. Calculate the mass of 0.0200 moles of $Cu(NO_3)_2$.

mass = g [2]

(iv) Calculate the total volume of gas, in dm³ at r.t.p., produced when 0.0200 moles of $Cu(NO_3)_2$ is heated.

volume = dm³ [2]

(v) Powdered aluminium reduces copper(II) oxide.

Write the symbol equation for this reaction.

- Oxygen is produced by the decomposition of aqueous hydrogen peroxide. Manganese(IV) oxide,
 MnO₂, is a catalyst for this reaction.
 - (d) The equation for the decomposition of aqueous hydrogen peroxide, $H_2O_2(aq)$, is shown.

 $2H_2O_2(aq) \ \rightarrow \ 2H_2O(l) \ + \ O_2(g)$

 $50.0\,cm^3$ of a $0.200\,mol/dm^3$ solution of $H_2O_2(aq)$ is used.

Calculate the mass of O_2 that forms. Use the following steps.

• Calculate the number of moles of H_2O_2 used.

..... mol

• Determine the number of moles of O₂ produced.

..... mol

• Calculate the mass of O₂ produced.

..... g [3]

- 4 This question is about sodium and compounds of sodium.
 - (c) A student determines the concentration of a solution of dilute sulfuric acid, H₂SO₄, by titration with aqueous sodium hydroxide, NaOH.
 - step 1 25.0 cm³ of 0.200 mol/dm³ NaOH is transferred into a conical flask.
 - step 2 Three drops of methyl orange indicator are added to the conical flask.
 - **step 3** A burette is filled with H_2SO_4 .
 - **step 4** The acid in the burette is added to the conical flask until the indicator changes colour. The volume of acid is recorded. This process is known as titration.
 - **step 5** The titration is repeated several times until a suitable number of results is obtained.
 - (iv) 20.0 cm^3 of H_2SO_4 reacts with 25.0 cm^3 of 0.200 mol/dm^3 NaOH.

The equation for the reaction is shown.

 $\text{H}_2\text{SO}_4 \ + \ 2\text{NaOH} \ \rightarrow \ \text{Na}_2\text{SO}_4 \ + \ 2\text{H}_2\text{O}$

Calculate the concentration of H_2SO_4 using the following steps.

• Calculate the number of moles in 25.0 cm³ of 0.200 mol/dm³ NaOH.

..... mol

• Determine the number of moles of H_2SO_4 that react with the NaOH.

..... mol

• Calculate the concentration of H₂SO₄.

..... mol/dm³ [3]

- **5** Potassium is a Group I element.
 - (c) When potassium is added to water, it reacts vigorously and a coloured flame is seen. The equation for the reaction is shown.

 $2K(s) + 2H_2O(I) \rightarrow 2KOH(aq) + H_2(g)$

(iv) Calculate the volume, in cm³, of hydrogen gas formed when 2.34 g of potassium is added to excess water at room temperature and pressure.

Use the following steps.

• Calculate the number of moles of potassium added.

= mol

• Determine the number of moles of hydrogen gas formed.

= mol

• Calculate the volume of hydrogen gas formed.

volume = cm³
[3]

6 (e) Calcium nitrate crystals are hydrated and have the formula Ca(NO₃)₂•*x*H₂O where *x* is a whole number of molecules of water.

The student heats the crystals to remove the molecules of water.

 $Ca(NO_3)_2 \bullet xH_2O(s) \rightarrow Ca(NO_3)_2(s) + xH_2O(g)$

(ii) The student heats a sample of $Ca(NO_3)_2 \bullet xH_2O$ and forms 2.46g of $Ca(NO_3)_2$ and 0.0600 moles of H_2O .

Determine the value of *x*. Use the following steps.

• Calculate the M_r of Ca(NO₃)₂.

*M*_r =

• Determine the number of moles of $Ca(NO_3)_2$ formed.

moles of $Ca(NO_3)_2$ formed =

• Determine the value of x in $Ca(NO_3)_2 \bullet xH_2O$.

x =[3]